Pregnancy-associated venous thromboembolism: Insights from GARFIELD-VTE

Carlos Jerjes-Sánchez1,2, David Rodríguez3, Alfredo E. Farjat2, Gloria Kayani2, Peter MacCallum1,2, Renato O. Lopes4, Alexander G. G. Turpie5, Jeffrey I. Weitz5, Sylvia Haas6, Walter Agno6, Shinya Goto7, Samuel Z. Goldhaber1,2, Panpet Angchaisirikul8, Joern Dalsgaard Nielsen1, Sebastian Schellong9, Henri Bounameaux2,10, Lorenzo Mantovani11,12, Paolo Prandoni13, Ayaj K Kakkar14,15

1Escola de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Instituto de Cardiología y Medicina Vascular, TecSalud, 2Thrombosis Research Institute, London, United Kingdom, 3Queen Mary University of London, London, United Kingdom, 4Division of Cardiology, Duke University Medical Center, Duke Clinical Research Institute, 5McMaster University, Hamilton, Canada, 6McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada, 7Formerly Technical University of Munich, Munich, Germany, 8Department of Medicine and Surgery, University of Insubria, Varese, Italy, 9Department of Medicine (Cardiology), Tokai University School of Medicine, Japan, 10Bingham and Women’s Hospital and Harvard Medical School, Boston, USA, 11Department of Medicine, Ramathibodi Hospital, Mahidol University, Thailand, 12Copenhagen University Hospital, Denmark, 13Department of Internal Medicine, Rostock University Hospital, Germany, 14Vascular Medicine, University of Milano, Bicocca, Milan, Italy, 15Mazzoni Foundation on Anticoagulation, Bologna, Italy, 16University College London, London, United Kingdom

BACKGROUND
• The risk of venous thromboembolism (VTE) is increased in pregnancy and postpartum, such that VTE is a leading cause of maternal mortality1.
• The Global Anticoagulant Registry in the FIELD (GARFIELD)-VTE is an on-going non-interventional, prospective, observational study of VTE management and outcomes2.

PURPOSE
• Compare the baseline characteristics, diagnostic strategies, treatment patterns and 1 year clinical outcomes between women of childbearing age [<45 years] with or without pregnancy-associated VTE (PA-VTE) enrolled in GARFIELD-VTE.

METHODS
• Eligible patients were required to be ≥18 years of age, with a confirmed diagnosis of acute VTE within 30 days of entry into the study, and being actively managed for VTE.
• All patients provided written informed consent. The study was approved by the individual ethics committees of each participating site.
• Women with PA-VTE were defined as those diagnosed with VTE during pregnancy or within 6-weeks postpartum.

RESULTS
Study design
• Between May 2014 and January 2017, 11,842 patients were assessed for entry into GARFIELD-VTE. 10,868 patients from 415 sites in 28 countries were successfully enrolled, 1,130 of whom were eligible for analysis (Figure 1).

Table 1. Patient demographics

	PA-VTE (n=1,130)	NPA-VTE (n=1,187)	p
Age, years, mean (SD)	33.7 (6.1)	34.1 (5.3)	0.17
BMI, kg/m², mean (SD)	23.7 (3.9)	23.8 (3.4)	0.005
Current/past smokers (%)	40.2 (3.4)	43.9 (4.2)	0.006
Missing	5	7	0.27
Site of VTE, n (%)			0.07
DVT alone	147 (13.2)	160 (8.7)	0.01
PE alone	95 (8.3)	129 (6.8)	0.04
DVT+PE	58 (5.1)	23 (1.2)	0.001
Age	32 (2.7)	32 (2.8)	0.63
Missing	4	8	0.26
Obesity (BMI ≥ 30), n (%)	31 (2.5)	36 (2.1)	0.07
ASA	67 (5.9)	76 (5.8)	0.34
CABG	7 (0.6)	10 (0.5)	0.55
Miniprostheses	10 (0.9)	11 (0.6)	0.48
Missing	2	3	0.40
Completed VTE (n, %)			0.07
CABG	2 (0.2)	1 (0.1)	0.63
VTE	110 (9.9)	114 (6.1)	0.006
Missing	2	5	0.29
Other interventions			0.006
Anticoagulation	1017 (93.3)	1097 (59.9)	0.0001
CABG	65 (5.7)	71 (3.7)	0.03
VTE	1 (0.1)	3 (0.2)	0.40

Diagnostic strategies
• Compression ultrasonography was frequently used to diagnose DVT in PA-VTE patients, whilst spiral/ chest computed tomography scan was frequently used to diagnose PE (Figure 2).

Figure 2. Diagnostic strategies for A deep vein thrombosis (B) and pulmonary embolism

Anticoagulation treatment
• At baseline, 43.2% of PA-VTE patients received parenteral therapy alone, and 50.4% received a VKA or a DOAC (Figure 3).

Figure 3. Anticoagulation treatment

1 year clinical outcomes
• After adjustment for baseline characteristics, the risk of all-cause mortality, recurrent VTE and major bleeding were comparable between patients with and without PA-VTE (Figure 4).

Figure 4. Adjusted hazard ratios for 1 year follow-up

CONCLUSION
• Half of all patients with PA-VTE received either a VKA or a DOAC, despite limited evidence for their use in this population.
• The rate of clinical outcomes was comparable between patients with and without PA-VTE.

ACKNOWLEDGEMENTS
We thank the physicians, nurses and patients involved in GARFIELD-VTE. Editorial assistance was provided by Nick Buddworth (Thrombosis Research Institute, London, UK). REFERENCES

3DECLARATION OF CONFLICT OF INTEREST

No disclosures of any kind are declared from any of the authors.