Global Anticoagulant Registry in the Field – Venous Thromboembolism (GARFIELD-VTE)

Rationale and design

Jeffrey I. Weitz; Sylvia Haas; Walter Ageno; Pantep Angchaisuksiri; Henri Bounameaux; Joern Dalsgaard Nielsen; Samuel Z. Goldhaber; Shinya Goto; Gloria Kayani; Lorenzo Mantovani; Paolo Prandoni; Sebastian Schellong; Alexander G. G. Turpie; Ajay K. Kakkar

1McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada; 2Formerly: Technical University of Munich, Munich, Germany; 3University of Insubria, Varese, Italy; 4Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 5Division of Angiology and Hemostasis, University Hospitals of Geneva, Switzerland; 6Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark; 7Harvard Medical School, Boston, Massachusetts, USA; 8Tokai University, Kanagawa, Japan; 9Thrombosis Research Institute, London, UK; 10University of Milano-Bicocca, Milan, Italy; 11University of Padua, Padua, Italy; 12Municipal Hospital Friedrichstadt, Dresden, Germany; 13McMaster University, Hamilton, Canada; 14University College London, London, UK

Summary

Venous thromboembolism (VTE) is a common disorder associated with significant rates of morbidity and mortality. VTE management aims to reduce mortality, the risks of recurrence, and long-term complications. VTE treatment is evolving with the introduction of non-vitamin K antagonist anticoagulants (NOACs). The Global Anticoagulant Registry in the FIELD – Venous Thromboembolism (GARFIELD-VTE) is a prospective, multicentre, observational study that will enrol 10,000 patients treated for acute VTE from ~500 sites in 28 countries. Identified sites reflect the diversity of care settings, including hospital and outpatient settings. Patients will be managed according to local practices and followed for at least three years. The primary objective is to determine the extent to which VTE treatment varies in the real-world setting and to assess the impact of such variability on clinical and economic outcomes. Evolving patterns of care will be captured using two sequential cohorts. The GARFIELD-VTE registry will provide insights into the evolving global treatment patterns for VTE, both deep-vein thrombosis and pulmonary embolism. By enrolling patients from diverse care settings, the registry will provide information on adherence to national and international guidelines, identify good practice as well as treatment deficiencies, and relate patient outcomes to clinical management. The incidence of death, recurrent VTE, bleeding, post-thrombotic syndrome and chronic thromboembolic pulmonary hypertension will be documented. By capturing information during and after anticoagulation treatment, the registry will not only define aspects of the natural history of VTE, but also its economic and societal impact at a regional and global level.

Keywords

Registry, venous thromboembolism, deep-vein thrombosis, pulmonary embolism, anticoagulation, thrombolysis

Introduction

Deep-vein thrombosis (DVT) and pulmonary embolism (PE), either as the primary event or a complication of DVT, are known collectively as venous thromboembolism (VTE). VTE is a leading cause of morbidity and mortality worldwide (1). Moreover, the risk of recurrence is high (2–4) and VTE is associated with serious long-term complications, including post-thrombotic syndrome (PTS) and chronic thromboembolic pulmonary hypertension (CTEPH) (5).

The annual incidence of VTE in the general population of western countries ranges from 1-2 cases per 1000 persons and increases with age (6–8). Although the incidence of VTE in Asia is reported to be lower than that in western countries, the data supporting this concept are limited (9). In Europe, the annual mortality rate from VTE is more than double that for AIDS, breast cancer, prostate cancer and traffic accidents combined (10).

The goal of VTE treatment is to reduce the risk of acute and long-term sequelae such as progression of DVT, fatal PE, recurrent VTE, PTS and CTEPH. The risk of recurrent VTE is highest in the first 6–12 months after cessation of anticoagulant therapy, but a heightened risk persists for at least 10 years, reaching about 25% at five years and 30% to 50% at 10 years (11). Up to 25% of all VTE events occur in those with a previous event. Patients with...
unprovoked VTE have a higher risk for recurrence than those with VTE provoked by transient risk factors such as major surgery, trauma, acute medical illness and others (12). Morbidity and mortality increase with each VTE recurrence (13) and anticoagulation, the foundation of VTE therapy, can cause major bleeding, which contributes to the morbidity and mortality.

PTS is the most common long-term complication of DVT. The incidence of PTS ranges from 20% to 50% within two years of the index DVT (14, 15). PTS is severe in approximately 10% to 15% of cases, costs society billions of euros per year in time lost from work and in medical expenses and leads to functional disability and reduced quality of life (QoL) (16–18). The incidence of CTEPH is less certain. In PE patients followed for two years, one study reported a cumulative incidence of symptomatic CTEPH of 1% at six months, 3.1% at one year and 3.8% at two years (19).

The mainstay of VTE treatment is anticoagulant therapy, which is given for three months in patients with VTE provoked by a transient and reversible risk factor and for longer in those with unprovoked VTE or with ongoing risk factors such as cancer (20). Until recently, VTE treatment consisted of a parenteral anticoagulant, usually low-molecular-weight heparin (LMWH) and a vitamin K antagonist (VKA). The two treatments are overlapped for at least five days and LMWH is stopped when the international normalised ratio (INR) is therapeutic. Although effective, such treatment is cumbersome because LMWH administration requires daily subcutaneous injection, which can be difficult for some patients, and VKAs require frequent coagulation monitoring and dose adjustment, which is burdensome for patients and healthcare providers.

The recent introduction of the non-vitamin K antagonist oral anticoagulants (NOACs), which include rivaroxaban, apixaban, edoxaban and dabigatran, has streamlined VTE treatment. Compared with conventional therapy, meta-analyses of the phase III VTE trials reveal that the NOACs are as effective as VKAs for the prevention of recurrence, but are associated with less bleeding (21–27). Furthermore, the NOACs are more convenient than VKAs because they can be given in fixed doses without routine coagulation monitoring. Whereas edoxaban and dabigatran are initiated after at least five days of parenteral anticoagulant therapy, therapeutic doses of rivaroxaban and apixaban can replace parenteral anticoagulation, thereby enabling all oral therapy. In the face of this changing clinical landscape, it is important to capture the impact of the NOACs on VTE treatment and long-term outcomes on a global level. The Global Anticoagulant Registry in the FIELD – Venous Thromboembolism (GARFIELD-VTE) will provide insights into the evolving global treatment patterns and outcomes for VTE patients across a wide range of clinical settings.

The Garfield-VTE Registry
Registry design

The GARFIELD-VTE (ClinicalTrials.gov identifier: NCT02155491) is a global, prospective, multicentre, observational study of patients requiring treatment for acute VTE. It is an independent academic research initiative sponsored by the Thrombosis Research Institute (London, UK) and supported by an unrestricted research grant from Bayer Pharma AG (Berlin, Germany). The quality assurance processes employed in the registry are subject to independent review by an Audit Committee which, in turn, reports to the scientific Steering Committee. The primary aim of the registry is to observe initial, long-term and extended management strategies and clinical and economic outcomes in patients treated in a real-world setting. Data are captured from the time of diagnosis and over 36 months of follow-up in the various care settings.

The registry began recruiting patients in July 2014 and aims to enrol 10,000 patients within 30 days of diagnosis of DVT and/or PE from approximately 500 sites in 28 countries (Figure 1). To capture temporal trends in VTE management, patients are being...
enrolled in two consecutive cohorts, and are followed for at least three years (Figure 2). Recruitment into the second cohort commenced in January 2016 when recruitment of the first cohort was completed.

Coordinators in each participating country provided advice on the national distribution of VTE care settings to ensure that the chosen sites are representative of care in each country. Patients are treated according to standard local practices and no additional visits, tests or procedures are required by the protocol (except for the collection of data using QoL instruments). Data are collected from medical records according to specifications outlined in the electronic case report form (eCRF); the time points defined in the protocol are used as prompts for collection of data from the medical records from the preceding period and the frequency of visits is not specified. The registry has set predefined standards for remote data monitoring and onsite source data verification. Registry monitors will review 5% of all eCRFs against source documentation. All data modifications in the database will be recorded electronically in an audit trail. Variables defined as critical to the statistical analysis will periodically be subjected to a 100% electronic audit for the duration of the study.

Independent ethics committee and hospital-based institutional review board approvals were gained, as necessary, for the protocol. The registry is conducted in accordance with the Declaration of Helsinki, local regulatory requirements, and the International Conference on Harmonisation Good Clinical Practice and Pharmacoepidemiological Practice guidelines.

Registry population

The study population consists of males and females from randomly selected sites. All eligible patients are required to be 18 years of age or older and are being treated for VTE, having had a confirmed diagnosis of VTE (either as a primary or recurrent event) within 30 days of assessment for entry into the registry. Patients with recurrent VTE must have completed treatment for the previous VTE episode. The registry does not include patients with superficial vein thrombosis (SVT) or those for whom long-term follow-up is not envisaged. The registry also excludes patients participating in any study that dictates treatments, visit frequency, or diagnostic procedures.

Site selection

Sites were identified at random (using a computer-generated process) from a representative list reflecting treatment patterns in each country and were selected after completion of a qualification question or a qualification call. In some countries, after the process for random selection was exhausted, a few sites were chosen by the national coordinators to meet the site target for the country. Patients are identified from multiple sources, including hospital and outpatient settings from different specialties, such as: vascular medicine, general practice, and internal medicine (including haematology and intensive care). The identifying clinician registers the patient using the eCRF. Physicians involved in the initial diagnosis may transfer or refer patients to other physicians who will report treatment and follow-up to the registry.

Data capture

Data on outcomes relevant to the registry are collected through review of clinical records and patient notes. For the first VTE event recorded in the registry, and for each subsequent VTE event, the following information is captured: patient demographics, medical history, predisposing and provoking VTE risk factors during the past three months (including, for example, the presence of active cancer and thrombophilia), nature of VTE (extent and location), date and method of diagnosis, and symptoms. For patients with a prior episode of VTE, data are recorded before entry into the registry on: the nature of this VTE, the time since this episode as well as associated complications (such as symptoms of PTS and CTEPH, and recurrent VTE). The patient care management settings are defined according to specialty, location, and medical insurance. Routinely performed tests are documented (including INR, haemoglobin, platelet count and creatinine). Relevant medications taken prior to the date of VTE diagnosis and ongoing concomitant...
medications taken after VTE diagnosis are described. For patients treated with VKAs, the following data are also collected: INR, INR frequency and outcomes related to INR fluctuation. Data are collected over 36 months of follow-up. Treatment decisions for the first VTE event and each subsequent event are recorded over 36 months. Information is collected on initial and extended therapy for each VTE episode, including start and stop dates, dosing, changes in therapy, overall expected duration of therapy, and the reason for suspending or terminating therapy sooner than intended (such as bleeding, patient decision, and/or physician decision).

All hospitalisations are captured on the eCRF. The data include the duration of hospital stay, reason for hospitalisation, any VTE-related thrombosis or bleeding, whether the hospitalisation was expected or unexpected and the required intervention for VTE, if any.

Over the 36 months of follow-up, the data that will be collected from the medical records at regular intervals include: all PE-related deaths and all other causes of death (for example, due to strokes, cardiac- or cancer-related morbidity or bleeds), all bleeds and their sequelae, all VTE events and their sequelae (recurrent non-fatal PE or symptomatic DVT, PTS and CTEPH), healthcare resource consumption (hospitalisations, medical consultations, INR testing, diagnostic and interventional procedures for VTE) and any cardiovascular event (e.g. transient ischaemic attack, stroke, myocardial infarction or unstable angina). Both physician- and patient-reported outcomes are captured in order to gauge health status, patient treatment satisfaction, cost-effectiveness of treatment and burden of disease. At the start of study (baseline or month 1) and at regular intervals thereafter (month 3, month 6, month 12, month 24 and month 36), data will be collected from the medical records on patients’ rating on the Villalta scale (from 0 [none] to 10 [most severe]), and the symptoms (pain, cramps, heaviness, paraesthesia, and pruritus) and signs of PTS (swelling, induration, hyperpigmentation, venous ectasia, redness and pain during calf compression) (28). The physician also assesses the severity of PTS using the Villalta scale (28) at the end of the study (either at month 36 or at the time when the patient withdraws from the study). Patients also complete a modified Short Form Health Survey (SF-12) QoL questionnaire to evaluate the overall burden of illness at baseline/month 1, month 3, month 6, and month 24 and the Anti-Clot Treatment Scale (ACTS) questionnaire to evaluate the burdens and benefits of anticoagulation therapy (28) at baseline/month 1, month 3 and month 6 in selected countries (where local language versions are available). The ACTS instrument, which includes a 12-item burdens scale and a 3-item benefits scale, has been shown to consistently and reliably report on patients’ satisfaction with anticoagulation treatment, irrespective of their underlying condition (28).

Registry outcomes

The main objectives of the registry are to capture the treatment patterns for acute VTE (either conventional anticoagulation therapy, NOAC therapy or other treatment modalities); and the rate and nature of VTE recurrence, VTE complications (including PTS and CTEPH), bleeding complications, and all-cause mortality.

Other objectives include: the assessment of the rates of stroke and acute coronary syndrome, health-related QoL, and other patient-reported outcomes using the Villalta scale, and the SF-12 and ACTS instruments.

Based on the data collected from the eCRF, healthcare resource consumption will be captured so that the economic burden of VTE can be computed both overall and per patient per year from the perspective of the payer, e.g. national health service, public/private/statutory insurance etc. Healthcare resource consumption includes: drugs, hospitalisations, medical consultations, INR laboratory testing, and diagnostic and interventional procedures. Data from the eCRF describes, measures and quantifies treatment patterns and related costs longitudinally at the patient level. As appropriate, healthcare resources consumption will be presented in terms of the number, occurrence, length of stay and type of medical contact, i.e. outpatient care visits including: GP visits, office-based care and hospital-setting outpatient visits; and inpatient care including full- and day-case hospital admissions. In the main economic analysis, all costs will be presented as cost per patient per year, expressed in the local currency and translated into Euros and USD using appropriate conversion rates (e.g. PPP’s). Overall cost will also be referenced to each country’s healthcare expenditure by dividing the cost per VTE patient per year by the average per capita healthcare expenditure in that country.

Data management

Data are submitted to the registry coordinating centre via a secure web-based electronic database capture system, CLINPAL™ (designed by eClinicalHealth Services, Stirling, UK) and are analysed by the Thrombosis Research Institute, London, UK. All patients are assigned a unique identifier, and personally identifiable data are removed at the hospital source, ensuring anonymity and protecting confidentiality. The eCRFs are examined by the registry coordinating centre to ascertain completeness and accuracy, and data queries are sent to participating sites. Source data verification is undertaken in 10% of all cases.

Statistical analysis plan

The Full Analysis Set (FAS) includes patients eligible for the analysis with baseline data locked as complete. Patients who consented to participate in the study and are subsequently found to be ineligible will not be included in the registry database.

The statistical analysis, which will include a description of the population characteristics and outcome variables, will be exploratory, descriptive and summarised into frequency tables (ordinal or nominal data) or summary statistics with mean, standard deviation, minimum, maximum, median, lower and upper quartiles. Confidence intervals (CI) rather than p values will be the standard method for presenting statistical results. The inclusion of both continuous and categorical demographic data will allow for the application of principal component analysis (PCA) and other multivariate statistical methods. Such techniques enable modelling of the impact of lifestyle factors on disease. All analyses will be...
performed for the total study sample and separately for each country and region (as appropriate). Events of special interest will be analysed using descriptive statistics, and event rates based on person-time and time-to-event models will be calculated.

Occurrence of disease

Analysis of data from a cohort study involves estimation of the rates of diseases of interest that occur among cohort members during the study period. Occurrence is most appropriately measured in terms of incidence rates. Rates of mortality, recurrence, major bleeding, and other clinical outcomes (person-time event rates and 95% CI) are described using the population at risk identified at the beginning of the follow-up. In addition, the total number of events including first events and repeated events (cumulative incidence) will be recorded.

Time-to-event endpoints

The analysis of time-to-event is measured from the date of enrolment to the date of first occurrence of the relevant event in patients with an event of interest, unless indicated otherwise. If the

Table 1: Comparison of the features of GARFIELD-VTE registry with those of other ongoing prospective VTE registries.

<table>
<thead>
<tr>
<th>Registry</th>
<th>Population size</th>
<th>Patient enrolment – key design features</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARFIELD-VTEa</td>
<td>Target: 10,000</td>
<td>• Enrolment: Treated patients enrolled within 30 days of a diagnosis of acute VTE (either primary or recurrent) in two sequential cohorts
• Setting: About 500 sites in 28 countries from nationally representative clinical settings (hospital and community). Patients are managed according to local standard practice
• Endpoints: Treatment of acute VTE; rates of VTE recurrence, complications (including PTS and CTEPH), bleeding, and all-cause mortality at 6 months; rates of stroke and ACS; health-related QoL, costs of hospitalisation and interventions for VTE</td>
<td>≥3 years</td>
</tr>
<tr>
<td>VTEvalb (32)</td>
<td>Target: 2000</td>
<td>• Enrolment: Adults with a clinical suspicion of either: acute PE (with or without DVT) (cohort 1), acute DVT (without symptomatic PE) (cohort 2) or with an incidental diagnosis of VTE (PE or DVT) (cohort 3)
• Setting: Single-centre study at University Medical Centre of the Johannes Gutenberg University Mainz, Germany. Both active (defined investigational plan – medical-technical diagnostic/follow-up examinations) and passive follow-up of patients
• Endpoints: Short- and long-term mortality (PE-related and all-cause mortality) and rate of recurrent symptomatic recurrent non-fatal PE or DVT</td>
<td>5 years</td>
</tr>
<tr>
<td>PREFER-VTEc (33)</td>
<td>Target: 3600</td>
<td>• Enrolment: Adults with diagnosis of acute VTE (primary or recurrent); recruitment aim – ratio of PE:DVT of 2:3
• Setting: European registry of 381 sites in 7 countries (Austria, France, Germany, Italy, Spain, Switzerland, and the UK). Sites are locally representative of primary and secondary care settings. Patients managed according to local standard practice
• Endpoints: 12-month direct healthcare resource utilisation; assessment of the real-life acute and mid-term management of patients with VTE (prevention of VTE recurrence, treatment of bleeding), incidence of recurrent DVT/PE, myocardial infarction, stroke, systemic embolic events, PTS and death</td>
<td>≥1 year</td>
</tr>
<tr>
<td>PERCEIVEd</td>
<td>To date: 6822</td>
<td>• Enrolment: Adults with newly diagnosed malignancy of the breast, colon and rectum, pancreas, lung, prostate or ovary
• Setting: Nine hospital cancer centres in 6 countries (Austria, India, Italy, Singapore, UK, USA). Patients are treated according to local best practice
• Endpoints: Incidence of VTE, stroke, myocardial infarction, bleeding and mortality over 10 years from diagnosis of cancer</td>
<td>10 years or until death</td>
</tr>
<tr>
<td>RIETEd (34)</td>
<td>To date: >45,000</td>
<td>• Enrolment: Patients with documented symptomatic DVT or PE, confirmed by objective tests
• Setting: Computerised registry of patients from hospitals in 16 countries (Spain, Italy, France, Israel, Portugal, Germany, Switzerland, Belgium, Czech Republic, Republic of Macedonia, Greece, Canada, Brazil, United States, Argentina, and Ecuador). Patients are managed according to clinical practice
• Endpoints: Short-term (3-month) mortality and bleeding; long-term symptomatic recurrent VTE (non-fatal PE or DVT) and PE-related death</td>
<td>≤2 years (5000 patients) ≤1 month (10,000 patients)</td>
</tr>
</tbody>
</table>

Weitz et al. GARFIELD-VTE: Rationale and design

By capturing information during and after anticoagulation treatment on VTE; however, these registries are often limited by real-world settings. In contemporary clinical research, there is a move towards collecting evidence to evaluate drug safety and effectiveness from observational studies. Large prospective disease registries, such as GARFIELD-VTE, have a number of advantages over RCTs. These include a) avoiding bias and allowing the full range of clinical evidence to be explored in terms of patient types, clinical settings and outcomes; b) informing clinicians and policy makers about less well represented groups, such as the elderly, women during pregnancy and those with existing comorbidities (for example, renal impairment or high risk of bleeding), for whom disease management may be challenging; and c) documenting routine clinical management at a national and global level.

It has yet to be determined how NOACs are being used in clinical practice and their impact on short- and long-term complications of VTE remains uncertain. Several registries in Europe (e.g. PREFER-VTE) are seeking to record the impact of NOAC treatment on VTE; however, these registries are often limited by small patient numbers and short durations of follow-up (Table 1). The sequential recruitment of patients (between 2014 and 2017) into the GARFIELD-VTE registry shortly after diagnosis of an acute VTE event (whether primary or recurrent) is expected to record the evolving treatment patterns during a time when NOACs are becoming more widely adopted.

Due to the global nature of the registry, GARFIELD-VTE will document the regional heterogeneity in the clinical presentation of the index and recurrent VTE events and the incidences of recurrent VTE, bleeding, PTS and CTEPH. In addition to reporting on pre-specified clinical and economic outcomes, analyses from GARFIELD-VTE will be hypothesis generating, allowing the exploration of some aspects of the natural history of VTE as well as the economic and societal impact of VTE. The degree of patient involvement in the generation of data is expected to provide unique insights into the QoL of patients with VTE and the aspects of this disease that most impact on patients’ lives. It is expected that findings from this registry will inform new avenues for patient-oriented research.

It is important to recognise that registries differ in their design, recruitment strategies, care setting, geographic spread and duration of follow-up (Table 1) (32–35). Compared with other ongoing prospective registries in VTE, the global GARFIELD-VTE registry has the potential to capture the burden of disease in large-scale populations by employing broad inclusion criteria in a widely representative populations of patients with VTE (across a range of clinical settings) and to capture long-term follow-up data in the community as well as the hospital setting. The value of the GARFIELD-VTE registry is enhanced by high-quality data collection due to the supervision of an independent Audit Committee, which oversees site-dependent verification, remote site monitoring and electronic database monitoring to ensure data quality.

There are inherent limitations to the design of the GARFIELD-VTE registry. For example, GARFIELD-VTE will not provide the same level of insight into the pathogenesis and nature of VTE as single-centre registries such as VTEval (32), which has a defined investigational plan for medical-technical diagnostic/follow-up examination of patients. In addition, 36 months of follow-up may be too short to capture the natural history of VTE in all patients. Nonetheless, the large sample size, the global recruitment and the
36 months of follow-up are unique features of the GARFIELD-VTE registry.

Acknowledgements

We thank the physicians, nurses, and patients involved in the GARFIELD-VTE registry. JW holds the Canada Research Chair (Tier I) in Thrombosis and the Heart and Stroke Foundation J.F. Mustard Chair in Cardiovascular Research.

Conflicts of interest

References

29. Ageno W, Mantovani LG, Haas S, et al. Safety and effectiveness of oral riva-
roxaban versus standard anticoagulation for the treatment of symptomatic

© Schattauer 2016

Thrombosis and Haemostasis 116.6/2016

Downloaded from www.thrombosis-online.com on 2016-12-06 | ID: 1000521375 | IP: 144.82.108.120
For personal or educational use only. No other uses without permission. All rights reserved.
Weitz et al. GARFIELD-VTE: Rationale and design